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Abstract

In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid–structure
interaction. The scheme is based on a combination of an implicit, L-stable, multi-stage Runge–Kutta scheme and an expli-
cit Runge–Kutta scheme. Fluid and structure dynamics are integrated using the implicit scheme and only the pressure
loads acting on the structure are integrated explicitly.

For an academic problem we show that mesh optimization functions, which are often necessary in standard mesh defor-
mation algorithms, can have a detrimental effect on the temporal order and accuracy. We use a radial basis function (RBF)
interpolation with a thin plate spline to create a smooth displacement field for the whole fluid domain, which does not
affect the order of the IMEX time integration scheme. For reasonable accuracies, the IMEX schemes outperform a sec-
ond-order staggered scheme by a factor of 2–3.

As an example for a three-dimensional, real-world problem, a simulation of a transonic wing flutter case, the AGARD
445.6 wing, is performed. For this test case, a clear third-order time accuracy is observed for IMEX3.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For a wide range of engineering problems, dynamic multi-physics interactions like fluid–structure interac-
tion play a key role in the safety of the design. For example, the construction of a wing can fail when flutter
occurs. The computation of fluid–structure interaction phenomena has therefore received a lot of interest over
the past decades. Nowadays, complex real-world fluid–structure interaction problems can be simulated such as
complete jet-fighter aircraft [1], although simulation times are very high.

In the fluid–structure interaction literature, two distinct ways are identified for solving the coupled problem:
the monolithic approach and the partitioned approach [2]. In the monolithic approach, the equations govern-
ing the multi-physics are discretized and solved within the same solver. A monolithic approach requires the
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implementation of a whole new solver in which the structure and fluid dynamics are merged. This generally
results in ill-conditioned systems for which existing solution algorithms are far from optimal [3].

In the partitioned approach, the flow and structure domains are treated separately. This has the advantage
that different, already existing solvers can be used, which can be maintained separately. Different solvers can
use different meshes and discretizations that do not have to match at the fluid–structure interface. The cou-
pling at the interface, therefore, requires an interpolation scheme to transfer displacements from the structure
to the flow and pressure forces from the flow to the structure. In [4], a review of several interpolation schemes
revealed that radial basis function interpolation with compact support or thin plate splines [5,6] performed
best. Drawback of the partitioned approach is that in numerical simulations the coupling is not solved implic-
itly, but explicitly as boundary conditions imposed by one system onto the other. This explicit coupling can
cause numerical instability, so that either the time step needs to be decreased or sub-iterations have to be per-
formed. By sub-iterating the partitioned scheme, the fully coupled solution can be obtained. The efficiency and
stability of the sub-iterations can be increased by, e.g. using under relaxation [7], reduced order modeling [8],
Newton–Krylov acceleration techniques at the interface [9] or on the whole domain [10]. In any case, still a
number of sub-iterations is required for every time step, increasing the computational effort. In order to obtain
a stable and accurate solution with a partitioned scheme it depends on the problem whether it is more efficient
to reduce the time step or to use sub-iterations.

Due to the interaction with the structure a mesh deformation algorithm is required that deforms the flow
mesh based on the boundary displacements. Some mesh deformation techniques exploit the connectivity of the
internal grid points, e.g. by representing the connectivity by springs [11–13] or as solid body elasticity [14].
Special instances of this continuous approach include moving grids based on Laplacian and Biharmonic oper-
ators [15]. All methods based on grid connectivity require solving a sparse system of equations involving all the
flow points, which can be solved approximately using a small number of iterations.

Other mesh deformation strategies move each grid point individually based on its position in space and this
results in the so-called point-by-point schemes. In de Boer et al. [16], Radial Basis Functions – originally only
used at the fluid–structure interface – were extended to interpolate the displacement to all the nodes of the flow
mesh. This method has to solve a system involving only the flow points on the boundary. The displacements of
the nodes interior to the fluid domain can also be easily performed in parallel.

The fluid dynamics equations that are solved on dynamic meshes are often written in the Arbitrary
Lagrangian–Eulerian (ALE) formulation [17]. This introduces an additional term to the convective fluxes that
depends on the velocity of the deforming mesh. A geometric conservation law (GCL) provides the relation
between the deformation of the mesh and the velocity of the mesh. When time is discretized a discrete geomet-
ric conservation law (D-GCL) provides the relation between the discrete mesh displacement and the discrete
mesh velocity. Violating the D-GCL generally results in a numerically less stable scheme and a loss of accuracy
and efficiency [18,19].

Fluid–structure interaction covers a wide range of physical applications. For the weak interactions parti-
tioned methods can be used. For instance, wing flutter has been simulated successfully using partitioned meth-
ods by Farhat et al. [20]. For applications with a strong interaction, loosely coupled partitioned schemes
require an overly restrictive time step for numerical stability [21]. For this type of applications, like flags or
sails, a monolithic or strongly coupled scheme is more appropriate. In this paper, we only consider weak inter-
action, hence we choose a partitioned integration scheme without sub-iterations.

Promising for increasing the efficiency of fluid–structure interaction simulations are higher-order time inte-
gration schemes. Compared to second-order methods that are current practice in engineering and fluid–struc-
ture interaction simulations [1,22,23], multi-stage, L-stable, Runge–Kutta schemes (ESDIRK) have shown
their potential for computational fluid dynamics simulations [24,25]. More recently, these schemes were also
applied to fluid dynamics with moving boundaries [19], but without the interaction with a structure dynamics
model. Higher-order time integration has been used for the simulation of academic structure dynamics prob-
lems in [26] and for the partitioned computation of relatively simple fluid–structure interaction problems in
[27]. In the partitioned fluid–structure interaction simulations a combination of implicit/explicit Runge–Kutta
time integration schemes is used, referred to as IMEX schemes. The implicit scheme integrates the fluid and
structure dynamics and the explicit scheme only integrates the coupling term from the fluid to the structure.
High order accurate convergence in time could be obtained without a need for sub-iterating the partitioned
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algorithm and in terms of computational efficiency the high order IMEX schemes were also outperforming
second-order time accurate methods. However, only a one-dimensional problem was considered.

In this paper, we extend the IMEX partitioned algorithm to a general three-dimensional approach and
investigate its efficiency for real-world applications. The displacement of the fluid–structure interface is not
prescribed anymore, as in [19], but actually depends on the interaction with the structure dynamics. Apart
from the partitioned time integration we also have to deal with the mesh deformation for arbitrary moving
boundaries. For obtaining higher-order accuracy in time, the smoothness of the mesh deformation algorithm
plays a key role. In this paper, we therefore show the potentially adverse effect of the mesh deformation on the
order of the time accuracy. Secondly, we show the potential efficiency gains of high order methods over sec-
ond-order schemes when the higher-order time accuracy is obtained.

First the general layout of a fluid–structure interaction solver is given, where after all the components are
discussed. Some numerical tests are performed on a one-dimensional piston problem to demonstrate the influ-
ence of mesh deformation on the order of convergence in time. As an illustration for a real-world three-dimen-
sional test case, the scheme is applied to the simulation of a transonic wing flutter case, the AGARD 445.6
wing [28].
2. Fluid–structure interaction model

The aim is to develop a partitioned fluid–structure interaction solver that has higher-order accuracy in time.
Because of the partitioned approach, separate solvers are used for the flow and structure and a coupling algo-
rithm is needed both in space and time. In space an interpolation scheme is required at the fluid structure inter-
face that connects the spatial discretization (meshes). In time a partitioning algorithm is required that connects
the time integration schemes. Summarizing, the fluid–structure interaction solver consists of the following six
ingredients:

� A flow solver: the solver can be, e.g. an Euler or Navier–Stokes solver. Any kind of spatial discretization can
be used by the solver, e.g. a finite element or finite volume method.
� A structure solver: the structure solver can use any kind of spatial discretization for solving linear or non-

linear problems.
� A spatial coupling algorithm: in general the flow and structure meshes do not match at the interface and an

interpolation scheme is necessary to transfer the displacements from the structure to the flow and the pres-
sure loads from the fluid to the structure.
� A mesh deformation algorithm: since the fluid boundaries are dynamic, the interior mesh has to be deformed

to match the fluid boundaries.
� A time integration scheme: this can be any time integration scheme, e.g. ESDIRK or BDF with a mesh

velocity computation algorithm F that satisfies the Discrete Geometric Conservation Law (D-GCL)
� A temporal coupling algorithm: this scheme is required when separate solvers or solution techniques are used

for the flow and the structure. A sub-iteration method can also be included to obtain a strongly-coupled
scheme.

In the following sections, each of these ingredients is described in more depth.

2.1. Flow model

The flow used in this paper is compressible and inviscid. The fluid is an ideal gas. The governing equations
for the flow are the Euler equations and the ideal gas law: p ¼ qRgT , with p the pressure, q the density, T the
temperature and Rg the gas constant. Since the fluid domain is deforming, the Euler equations are written in
the Arbitrary Lagrangian–Eulerian (ALE) formulation [17]. A general purpose, compressible Finite Volume
flow solver is used to solve the equations on an unstructured, hexahedral mesh [29]. Since the flow is inviscid,
only the mesh velocity normal to the fluid faces ðj � nÞ is required. The semi-discrete system for a cell l can be
written as
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dðXUÞl
dt

þ
XNl;face

i¼1

ðUi �Uiðj � nSÞl;iÞ ¼ 0; ð1Þ
where U is the fluid state in conservative variables, X is the cell volume, Nl;face denotes the number of faces that
define cell l, Ui the numerical flux for the fluid dynamics equations as computed on static meshes for face i, Ui

the fluid state at face i, Sl;i is the face surface, jl;i its velocity in the moving mesh and nl;i the face normal pointing
outward of cell l. In our case, the numerical flux U is computed using the standard second-order central scheme
with Jameson type artificial dissipation [30]. The semi-discrete system can be written more compactly as
dU

dt
þ RfðU; jÞ ¼ 0; ð2Þ
wherein Rf the semi-discrete fluid dynamics model. Although we only consider the Euler equations for the fluid
in this paper, we expect similar results for the full Navier–Stokes equations.

2.2. Structure model

The structure model is a linear structure dynamics model without damping:
M
d2Q

dt2
þ KQ ¼ Fsf ; ð3Þ
with M the mass matrix, K the stiffness matrix, Fsf the pressure load from the flow that acts on the structure
and Q the structural displacement vector. In this paper, we do not use a separate structure solver to simulate
the structural dynamics, but we use OpenFEM [31], a Finite Element toolbox for Matlab, to construct the
matrices M and K. For modeling a three-dimensional solid, we use the standard 20 node, 60 degrees-of-free-
dom (DOF), brick-element and the standard 15 node, 45 DOF, pentahedral element [32]. Both element types
use quadratic shape functions. The resulting mass matrix M is not lumped. The structure state vector

W ¼ M _Q
Q

� �
, which contains the structural momentum vector M _Q and the structural displacement vector

Q, is used to write the structure dynamics as a system of ordinary differential equations
dW

dt
þ AsW ¼

Fsf

0

� �
; ð4Þ
with
As ¼
0 K

�M�1 0

� �
; ð5Þ
which is the semi-discrete formulation of the structure dynamics. A more general formulation of (4) is
dW

dt
þ RsðW;FsfÞ ¼ 0; ð6Þ
with Rs the semi-discrete structure dynamics model.

2.3. Spatial coupling

In the partitioned fluid–structure interaction solver two interpolation schemes are required to transfer data
at the fluid–structure interface from the flow mesh to the structure mesh and vice versa. The first scheme trans-
fers displacements ds of the interface of the structure mesh to displacements dfs of the interface of the flow
mesh
dfs ¼ H fsds; ð7Þ

with Hfs the interpolation matrix for transferring data from the structure interface mesh to the fluid interface
mesh. The subscript fs denotes that a quantity defined on the discrete fluid mesh at the interface is obtained
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from the interpolation of that quantity from the discrete structure mesh at the interface. The second interpo-
lation scheme transfers the pressure forces Ff acting on the fluid interface mesh to a pressure load Fsf acting on
the structure interface mesh
Fsf ¼ H sfFf ; ð8Þ
with Hsf the interpolation matrix for transferring data from the fluid interface mesh to the structure interface
mesh. The subscript sf denotes that a quantity defined on the discrete structure mesh at the interface is ob-
tained from the interpolation of that quantity from the discrete fluid mesh at the interface. Many different
interpolation methods are available for the construction of the interpolation matrices. In an earlier study
on these interpolation methods [4,33], the radial basis function (RBF) interpolation [5,34], using thin plate
spline or compact support, turned out to be the most accurate method for interpolating the structural displace-
ments to the flow mesh when a second-order spatial discretization is used. In [33], it was shown that a very
simple (and inexpensive) nearest neighbor interpolation scheme can still have the same high accuracy as a ra-
dial basis function interpolation as long as the interpolation is performed from a fine mesh to a coarse mesh.
In general, fluid–structure interaction applications the flow mesh is much denser at the interface than the struc-
ture mesh. Therefore, we use the nearest neighbor interpolation to transfer the pressure forces from the flow
mesh to the structure mesh and the RBF interpolation to transfer the displacements to the flow mesh.

2.3.1. Radial basis function interpolation
Radial basis functions (RBF’s) have become a well-established tool to interpolate scattered data. A smooth

interpolation function is used to transfer the displacements known at the boundary of the structural mesh to
the boundary of the aerodynamic mesh.

The interpolation function, s, describing the displacement of the fluid interface mesh, can be approximated
by a sum of basis functions
sðxÞ ¼
Xns

j¼1

aj/ðkx� xsjkÞ þ pðxÞ; ð9Þ
where xsj ¼ ½xsj ; ysj
; zsj � are the centers in which the values are known, in this case the structure boundary

nodes, p a linear polynomial, ns the number of boundary nodes in the structure mesh and / a given basis func-
tion with respect to the Euclidean distance kxk. Adding a linear polynomial ensures that rigid body transla-
tions are exactly recovered. The coefficients aj and the polynomial p are determined by the interpolation
conditions
sðxsjÞ ¼ dsj and
Xns

j¼1

ajqðxsjÞ ¼ 0; ð10Þ
for all linear and constant polynomials q, and dsj the vector containing the discrete known values of the dis-
placement at the structure boundary mesh xsj .

The values of the coefficients aj and the linear polynomial can be obtained by solving the system
ds

0

� �
¼

M s;s P s

P T
s 0

� �
a

b

� �
; ð11Þ
with a the vector containing the coefficients aj, b the coefficients of the linear polynomial p, M s;s an ns � ns

matrix containing the evaluation of the basisfunction /sisj
¼ /ðkxsi � xsjkÞ and P s an ns � 4 matrix with

row j given by ½ 1 xsj ysj
zsj �. For details, see [5].

The values for the displacement of the boundary vertices of the flow mesh dfs, can then be obtained by eval-
uating the interpolation function in the fluid boundary vertices:
dfsj ¼ sðxf jÞ: ð12Þ
When it is assumed that the displacements are not extremely large compared to the initial position, the dis-
placements dfsj can be computed with respect to the initial position of the mesh xfj . This results in the inter-
polation matrix Hfs to be constant during the simulation. Note that after computing the coefficients a and b,
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the method can be easily partitioned, since the displacement in each fluid boundary vertex can be obtained
independently.

2.3.2. Nearest neighbor interpolation
In the nearest neighbor interpolation, the pressure in the fluid is integrated over each of the fluid cell faces

on the interface. Each fluid cell face i contributes a pressure force Ff;i that is added to the structural load Fsf;j of
the structure node j closest to the fluid cell face i. This method results in a Boolean matrix Hsf, which can be
generally kept constant during the simulation.

2.4. Mesh deformation

The flow mesh deformation matrix HXf Cf
interpolates the displacement of the fluid boundary vertices df to

displacements for all interior flow mesh vertices dfin
. Note that df not only includes the vertex displacements at

the fluid structure interface dfs, but also the flow vertices at the static boundaries. Mesh deformation tech-
niques that exploit the connectivity of the internal grid points, e.g. by representing the connectivity by springs
[11–13] or as solid body elasticity [14] require solving a system of equations involving all the flow points. Other
mesh deformation strategies move each grid point individually based on its position in space and this results in
the so-called point-by-point schemes. However, until now point-by-point schemes are only applied to the
boundary nodes of multi-grid blocks [35]. In [16], radial basis functions were used to interpolate the displace-
ment to all the nodes of the flow mesh. In the same study, it was concluded that the thin plate spline generated
meshes with a high quality after deformation and is therefore used in this paper.

The mesh deformation uses the same radial basis function interpolation algorithm as in Section 2.3. The size
of the system that has to be solved is equal to ðnb þ 4Þ � ðnb þ 4Þ, with nb the total number of boundary vertices
for the flow mesh. This system is usually very small compared to the systems that have to be solved in mesh-
connectivity schemes. The systems encountered there are approximately as large as nin � nin, with nin the total
number of mesh points. Another advantage of the RBF interpolation is that it results in a linear system as
opposed to, e.g. mesh deformation by torsional springs [13]. The total number of mesh points is a dimension
higher than the number of points on the boundary of the mesh. The moving mesh technique based on RBF’s is
very easy to implement, even for 3D applications, because no mesh-connectivity information is needed.

The efficiency for the mesh deformation can be increased even more when the mesh deformation HXf Cf
is

combined with the displacement interpolation Hfs. Hereto a radial basis function interpolation is made that
uses the fluid boundary vertices at the boundaries with a pre-imposed displacement (here we assume zero dis-
placements, hence static boundaries) and the structure nodes at the interface. For these imposed displacements
an interpolation field is generated for all internal flow vertices, including those on the fluid–structure interface.
In this case, the size of the system that has to be solved is equal to ðnb � nfs þ ns þ 4Þ � ðnb � nfs þ ns þ 4Þ, with
nfs the number of vertices on the dynamic boundary of the flow mesh. Therefore when nfs � ns, as it generally
is, the size of the system is reduced even further. The interpolation matrix HXf s transfers the structure displace-
ments directly to all the flow vertices
dfin
¼ HXf sds: ð13Þ
Although (13) denotes the resulting interpolation, the actual evaluation follows the procedure mentioned in
Section 2.3.1. When the displacements are not extremely large, HXf s is kept constant throughout the computa-
tion. Therefore, the flow mesh does not degenerate when it is moved in a periodic fashion (as for flutter cases).

2.5. Time integration scheme

Both the fluid and the structure dynamics, (2) and (6), can be expressed as a semi-discrete system of the
form
_wþ Rðw; vÞ ¼ 0; ð14Þ

wherein w is the fluid or structure state vector, R is the residual function (spatial discretization) of the fluid or
structure dynamics and v is any other variable, e.g. mesh velocity or external forcing. In this paper, we use an
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implicit, L-stable, multi-stage Runge–Kutta scheme for the time integration of the fluid and structure dynam-
ics. In particular, we use the so-called ESDIRK (explicit first stage, single diagonal coefficient, implicit Runge–
Kutta) schemes obtained from [36]. These schemes consist of a number of second-order accurate, implicit
stages within each time step. For each stage k we solve
wðkÞ � wn

Dt
þ
Xk

i¼1

akiR
ðiÞ ¼ 0; ð15Þ
where the superscript (k) denotes the solution at stage level k, Dt is the time step and aki are the coefficients
defining the ESDIRK scheme and
RðiÞ � R wðiÞ; vðiÞ
� �

: ð16Þ

The coefficients aki are generally represented in a Butcher-tableau, e.g. for a five-stage method the implicit
ESDIRK scheme and explicit ERK schemes have the following Butcher-tableau.

The values for the coefficients of the third-order (four stages) and fourth-order (six stages) schemes can be
found in [36]. The stage level is defined by ck ¼

Pk
i¼1aki for which the time level is tk ¼ tn þ ckDt. Note the

explicit first stage, a11 ¼ 0, and the single diagonal coefficient aii ¼ c for the ESDIRK scheme. Note also that
the stage levels c for the ESDIRK and ERK schemes are identical, which means that these methods have colo-
cated stage solutions. After solving the intermediate stages, the high order solution at the new time level tnþ1 is
obtained using the weights b
wnþ1 ¼ wn � Dt
Xs

i¼1

biR
ðiÞ; ð17Þ
with s the total number of stages of the scheme. Since both the ESDIRK and ERK scheme use the same
weights b to obtain a high order solution, they can be used in a combination and still obtain design order.
For instance in [36] the combination was used to explicitly integrate the fluid dynamics and implicitly integrate
the reaction equations in a convection–diffusion-reaction problem. We intend to use the explicit scheme only
for the integration of the pressure load at the fluid–structure interface and use the implicit scheme for the inte-
gration of the fluid and structure dynamics.
2.6. Mesh velocity computation satisfying the D-GCL

For the chosen time integration method a discrete-geometric conservation law (D-GCL) exists that should
be satisfied for accuracy and stability reasons [37,38]. The D-GCL prescribes the mesh face normal velocities
ðj � nÞ that are consistent with the mesh face displacement and time integration scheme. When we apply the
ESDIRK scheme to integrate the flow equation (1) and assume a uniform flow condition U0, we obtain for
every stage k
XðkÞl � Xn
l

Dt
�
Xk

m¼1

akm

XNl;face

i¼1

j
ðmÞ
i � ðnSÞðmÞi

 !
¼ 0; ð18Þ
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where XðkÞl and Xn
l are the volumes of cell l at tk and tn, respectively. The D-GCL basically states that the vol-

ume change of a cell in a time interval should be equal to the volume swept by its boundary in the same inter-
val. Or more discrete: the change in volume of a cell should be equal to the summation of the swept volumes
for each face individually, hence
Fig. 1.
face; a
XðkÞl � Xn
l ¼

XNl;face

i¼1

DXðkÞl;i ; ð19Þ
where DXl;i is the swept volume of face i of cell l in the time interval tn ! tk. Substitution of (19) into (18) gives
XNl;face

i¼1

DXðkÞl;i

Dt
�
Xk

m¼1

akmj
ðmÞ
i � ðnSÞðmÞi

" #
¼ 0: ð20Þ
As a restriction (20) should hold for each face individually, hence
DXðkÞl;i

Dt
�
Xk

m¼1

akmj
ðmÞ
i � ðnSÞðmÞi ¼ 0: ð21Þ
In the fluid–structure interaction computations, the fluid mesh is deformed for each stage k prior to the com-
putation of the flow at stage k. Therefore, the geometric properties of the mesh ðnSÞðkÞi are known. When the

swept volume DXðkÞl;i is also known the only unknown is j
ðkÞ
i since all other values have already been computed

in previous stages. So one obtains a constraint for ðji � nÞðkÞ
ðji � nÞðkÞi ¼
1

akkSðkÞi

DXðkÞl;i

Dt
�
Xk�1

m¼1

akmj
ðmÞ
i � ðnSÞðmÞi

" #
: ð22Þ
Therefore, when (19) and (22) are satisfied, so is the D-GCL. In order to satisfy (19) the swept volumes are
computed by defining each swept volume as a collection of surfaces with an outward pointing normal that
form a closed surface. The swept volume for face i consists of the face at tn, ðnSÞni , and at tk, ðnSÞðkÞi , which
we call external faces and a number of connecting internal surfaces that connect the edge of face i at tn, en

i ,
to the edge of face i at tk, e

ðkÞ
i . As long as the internal surfaces are uniquely defined by the shape of the edges

en
i and e

ðkÞ
i , (19) is satisfied.

Our mesh consists of hexahedral cells, Fig. 1, and the swept volumes are computed by simply making a
triangulation of the internal faces and computing the volume contained herein.

2.7. Partitioning scheme

In this paper, we only consider partitioned coupling methods without sub-iterations. For many aeroelastic
cases – such as flutter – partitioned methods should provide sufficient accuracy without loosing stability. The
method used is the IMEX [27] partitioning scheme. This scheme uses the implicit ESDIRK schemes for the
integration of the fluid and structure dynamics and explicit ERK scheme to integrate the coupling term of
Example of the swept volume for a hexahedral cell: (a) hexahedral cell at tn (solid) and at tk (dashed); (b) swept volume for the top
nd (c) swept volume for a side face.
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the flow to the structure. Since the coupling term Fsf is a linear term in the structure dynamics (4), the IMEX
scheme can be used as a state predictor for Fsf at the implicit stage level, without the risk of loosing the order
or accuracy of the time integration scheme [39]. Therefore, we write the IMEX state predictor for stage k as
F
ðkÞ	
sf ¼

Xk�1

i¼1

âki � aki

akk
F
ðiÞ
sf ; ð23Þ
where âki and aki are the Butcher coefficients of the ERK and ESDIRK schemes, respectively (Section 2.5).
A step-by-step summary of the resulting partitioned algorithm is presented in Appendix A.

3. Test cases

In this paper, we consider two test cases: the first is a one-dimensional piston problem. This academic test
case is used to show the importance of a good mesh deformation technique when high order time integration
schemes are used. It also shows the potential efficiency gains over second-order methods. The second test case
is the AGARD 445.6 wing flutter case. For this problem the accuracy and efficiency of the high order parti-
tioned IMEX schemes with a smooth grid deformation module are investigated. The AGARD 445.6 wing test
case demonstrates the practical applicability of high order time integration for real-world three-dimensional
fluid–structure interaction.

3.1. One-dimensional piston problem

In order to investigate the effect of the mesh deformation algorithm on the temporal accuracy, the one-
dimensional piston problem (Fig. 2) is used. This model has already been used in [27] as the test case for
the IMEX schemes. The fluid is modelled by inviscid flow and the structure by a linear mass-spring system,
which is governed by the scalar formulation of (3). The non-dimensional parameter settings used for the spring
stiffness and structure mass are �k ¼ 1:429 and �m ¼ 2, respectively. The non-dimensional parameters are
obtained by scaling with the equilibrium conditions for fluid domain length L, the fluid density q0 and the
speed-of-sound c0: �k ¼ ðkLÞ=ðq0c2

0Þ and �m ¼ m=ðq0LÞ. The Euler equations are solved in a two-dimensional
domain. The undeformed mesh spans ð0; 0Þ ! ð1; 1Þ. The mesh consists of 64� 4 cells in x; y-direction.
Two different meshes are used: a mesh which is ’’ideal’’, e.g. all cells are perfectly orthogonal (Fig. 3a). The
second mesh is ‘‘imperfect’’ and has cells that are not perfectly orthogonal (Fig. 3b). The second mesh mimics
mesh imperfections that are generally present for real-world cases, e.g. meshes do not have to be perfectly
aligned with important flow features like shocks. The fluid is an ideal gas with c ¼ 1:4 and Cp ¼ 3:5. The initial
displacement for the piston is chosen as q ¼ 0:5 and the flow is assumed to be uniform and at rest: u = 0, v = 0,
q ¼ 2=3, p ¼ ð2=3Þc=c. Approximately, one coupled period is simulated till t = 7 at which instance the errors
with respect to a temporally exact solution are computed. The comparisons are performed with two different
mesh deformation techniques.

The first mesh deformation technique uses a dual mesh on which the Laplace equation is solved to create a
displacement field [40]. After displacing the flow vertices, the mesh is optimized [41]. Optimization is necessary
to avoid degenerate cells, e.g. when long simulations are run the accumulation of interpolation errors can
cause the mesh to deteriorate. The optimization operation is generally not iterated until full convergence.
The second mesh deformation technique is based on radial basis function interpolation as explained in Section
2.4 and does not require an additional optimization function.
c0 ρ0

0

L0

q

x

k

m

Fig. 2. Sketch of the one-dimensional piston problem.



Fig. 3. A partial, stretched view of the initial mesh for the two-dimensional ideal and imperfect case: (a) ideal mesh and (b) imperfect
mesh.
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3.1.1. Influence of mesh deformation algorithm

In Fig. 4, the L2-norms of the fluid density q, pressure p, u-velocity and v-velocity for the different meshes
and mesh deformation schemes are shown. We use the fourth-order IMEX scheme for the partitioned time
integration. The results obtained for the dual mesh with smoothing functions are not satisfactory. The
fourth-order of the scheme is not observed and although the test problem is essentially one-dimensional,
the v-velocity is not zero due to the imperfect mesh. For the large time steps this perturbation is only small
compared to the errors in the density, pressure and u-velocity. However, since the convergence for the v-veloc-
ity is clearly not fourth-order, its influence becomes more apparent for the smaller time steps. Radial basis
function interpolation for the imperfect mesh has the same non-zero v-velocity for the large time steps. This
time, however, the perturbation does converge with fourth-order accuracy and therefore its influence on the
solution remains negligible. Therefore, we can conclude that the radial basis function interpolation does not
aggravate the imperfections in the flow mesh. For the ideal mesh, no perturbation in the v-velocity is generated
and the convergence of the solution is perfectly fourth-order accurate.

In order to explain the bad convergence for the dual mesh we study the mesh face velocities computed by
imposing the D-GCL. The mesh faces are identified by g ¼ x=L, the location of the mesh face at the equilib-
rium position relative to the length of the fluid domain at equilibrium. The velocities for the cell faces
g ¼ 0; 1=16; 2=16; . . . ; 1 obtained with the dual mesh deformation method are displayed in Fig. 5. For g ¼ 0
which is the location of the solid wall, the mesh velocity is identical to zero. For g ¼ 1 the mesh velocity is
approximately equal to the piston velocity (or equal when a fully coupled solution is obtained). Fig. 5 shows
that the dual mesh with optimization introduces irregularities (wiggles) in the mesh face velocities which are
worse for small Dt. The mesh face velocity does not converge to a consistent solution so the design order of the
IMEX scheme cannot be expected. Since the optimization is not necessarily converged for every time step, the
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Fig. 4. Convergence for the L2-norm of the density, pressure and u- and v-velocity components for the piston problem for the dual mesh
interpolation with optimization and radial basis function interpolation.
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mesh vertex displacements do not have to relate to the prescribed displacements at the mesh boundary. Hence,
the internal vertices can displace even when the boundary is not moving. This causes the highly irregular and
inconsistent behavior for the computed mesh face velocities. Due to the high accuracy and regularity of the
displacement field obtained with radial basis function interpolation the RBF mesh deformation algorithm
does not exhibit these convergence problems.

3.1.2. Efficiency of higher-order time accuracy
The reason for using high order time integration schemes is that they allow the use of larger time steps com-

pared to second-order schemes and still obtain the same accuracy in the solution. However, the amount of
computational work for a single time step with the IMEX scheme is much higher than for a single time step
with a second-order staggered [20] scheme. Solving an implicit time step for the staggered scheme or an impli-
cit stage for the IMEX scheme is approximately the same amount of work. Therefore, the work is estimated as
the total number of implicit stages (or time steps). The question is whether the increase in time step weighs up
to the additional work per time step. In Fig. 6a, the convergence for the second-order staggered and third and
fourth-order IMEX schemes is shown. The results are obtained for the ideal mesh with the RBF mesh defor-
mation. All methods converge with their design orders. In Fig. 6b, the efficiency of the schemes is presented by
the amount of work necessary to obtain a certain accuracy. At an error level of approximately 10�1.5 all the
methods are still outside the asymptotic range. Below an error level of 10�1.5 the solutions should have a rea-
sonable accuracy. At an error level of 10�2, the third-order IMEX scheme performs best and is two times fas-
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ter than the second-order scheme. For error levels below 10�2.5 the fourth-order IMEX scheme is more effi-
cient, e.g. at an error level of 10�3 IMEX4 is already three times faster than the second-order scheme.

3.2. AGARD 445.6 wing

As a three-dimensional test case for the IMEX scheme and the grid deformation module, the AGARD
445.6 test case [28] is used. The model used is the 2.5-foot semi-span model, which consists of a symmetric
NACA 65A004 airfoil, a sweep angle of 45� and a taper ratio of 0.66. The nose of the wing at the root is
located in the origin. The flow domain is a box defined by the corner points (�15,0,�15) [m] and
(45, 15,15) [m]. The boundary conditions for the domain consist of one symmetry plane at y = 0 to which
the wing is attached and external boundary conditions all around prescribed at the static boundaries. The
external conditions are set to the values obtained from [28] for the M1 ¼ 0:901 case. The medium used is
air for which the gas constant is Rg ¼ 287:05 [K s2/m2] and the specific heat ratio c ¼ 1:4. From the measured
density q1 ¼ 0:099468 [kg/m3] and velocity V 1 ¼ 296:69 [m/s] and the ideal gas assumption, one obtains
T1 ¼ 269:82 [K] and p1 ¼ 7704:05 [Pa]. Several meshes are used, containing 223k, 79k, 28k and 15k hexahe-
dral cells. The surface mesh on the wing for these meshes is shown in Fig. 7. The fine, medium, coarse and very
coarse mesh have 26583, 7492, 2765 and 912 vertices on the wing’s surface, respectively. The structure is mod-
eled using the finite element (FE) method. Two FE models have been used, a fine model, consisting of 13 · 10
standard 20 node, 60 degrees-of-freedom (DOF), brick-elements (hexa20) in the chordal and spanwise direc-
tion and 2 · 10 standard 15 node, 45 DOF, pentahedral elements (penta15) at the leading and trailing edge of
the wing. The coarse model uses 6� 6 hexa20 and 2 · 6 penta15 elements, see Fig. 8. The wing simulated is the
weakened model number 3 wing made out of Mahogany wood as described in [28]. The material properties are
assumed to be orthotropic and their settings are obtained from [42] and given in Table 1. The fiber orientation
(E11) of the wood is taken along the quarter-chord line. The Finite Element toolbox OpenFEM, freely avail-
able for Matlab, is used to resolve the eigenmodes of the beam and to export the mass matrix M and the stiff-
ness matrix K. The eigenmode frequencies for the fine and coarse models are compared to the experimental
data of [28] and the numerical results of [42] in Table 2. The table shows that both the fine and the coarse
Fig. 7. Surface meshes for fine to very coarse CFD meshes.

Fig. 8. Fine and coarse FE model of the AGARD 445.6 wing: (a) fine FE model and (b) coarse FE model.

Table 1
Material properties for the FE model

Property Value Dim

E11 3.1511 [GPa]
E22, E33 0.4162 [GPa]
G12, G13, G23 0.4392 [GPa]
m12, m13, m23 0.3100 [–]
q 381.98 [kg/m3]



Table 2
Results for the fine and coarse FE model of the AGARD 445.6 wing

Fine Coarse Yates [28] (baseline) Beaubien [42]

Mode 1 [Hz] 9.59 ð�0:1%Þ 9.71 ðþ1:1%Þ 9.60 9.46
Mode 2 [Hz] 40.23 ðþ8:2%Þ 41.86 ðþ9:7%Þ 38.10 39.44
Mode 3 [Hz] 50.69 ð�0:0%Þ 52.92 ðþ4:4%Þ 50.70 49.71
Mode 4 [Hz] 97.52 ð�1:0%Þ 104.24 ðþ5:8%Þ 98.50 94.39

Mass [kg] 1.68 1.64 1.86 1.69

DOFs 3120 990 – –
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model compare well with the experimental data [28] (within 10%). Therefore, we choose the coarsest model to
represent the structural dynamics. The coarse structure model has 295 nodes on the interface. The very coarse
flow mesh has already three times as many vertices on the fluid–structure interface. Therefore, the nearest
neighbor interpolation of the fluid pressure force to the structure nodes should be accurate. The initial defor-
mation of the wing is taken as the first bending mode and the amplitude is chosen such that the largest dis-
placement for a structural node is 0.1 m, see Fig. 9. At first a steady-state solution is computed around the
deformed wing shape. At t = 0 the wing is allowed to move freely according to its structural dynamics. For
the time step refinement analysis the third-order IMEX scheme is used as it requires less computing time
for a given time step compared to the fourth-order method. Therefore, the third-order IMEX scheme is more
practical when the time step is reduced substantially. The fourth-order IMEX scheme is also used to investi-
gate the computational efficiency of the scheme at large time steps.

3.3. Results

First the influence of the flow mesh is investigated by performing numerical simulations on the very coarse,
coarse, medium and fine mesh with the third-order IMEX scheme and a time step Dt ¼ 0:001 s, which is suf-
ficiently small for the meshes used to have a larger spatial discretization error than time integration error. In
Fig. 10, the lift history is shown for these simulations. The very coarse mesh is clearly too inaccurate and the
coarse mesh still has an error of 
 15%. The medium mesh has an error of 
 5% compared to the fine mesh
which is considered sufficiently accurate for the main purpose of this study: to verify that high order IMEX
Fig. 9. The initial displacement of the AGARD 445.6 wing.
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Fig. 10. Time history of the lift for the AGARD 445.6 wing, IMEX3, Dt ¼ 0:001 s.
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partitioned schemes in combination with the RBF mesh deformation are efficiently applicable to real world
problems.

For the investigation into the performance of the IMEX scheme and RBF mesh deformation a time step
convergence study is performed. As initial condition we use the solution at t ¼ 0:2 obtained using the
third-order IMEX scheme with Dt ¼ 0:001. This eliminates the transient at the beginning of the computation.
At t ¼ 0:2 approximately one period is computed till t ¼ 0:264 using the time steps Dt ¼ f0:016;
0:008; 0:004; 0:002; 0:001g s. The solution obtained with Dt ¼ 0:001 is taken as the temporally exact solution.
In Fig. 11, the results for the pressure field, w-velocity, structural displacement and lift at the end of the sim-
ulation are shown. The figures show a clear third-order convergence for all the properties in all the norms,
which shows that the combination of the partitioned IMEX scheme with a radial basis function mesh defor-
mation retains the order of the time integration scheme without the necessity to sub-iterate.

Even more important than the order of the scheme is the efficiency of the scheme, e.g. the amount of com-
putational time required to obtain a solution with a certain accuracy. Therefore, we estimate the maximum
allowable time step that still provides a physically correct solution, e.g. that still shows a damped oscillation.
In Fig. 12a, the time history for the lift is shown for the third-order IMEX scheme used in the time step con-
vergence study. The results show that a time step of Dt ¼ 0:016 is too large, since the solution starts to diverge.
For a time step of Dt ¼ 0:008 the solution still shows a damped oscillation, but less physical damping is pre-
dicted. The error in the lift at the end of the simulation is 
 10%. In Fig. 12b, the fourth-order IMEX scheme
is used with physical time steps of Dt ¼ 0:016 and Dt ¼ 0:008. The results show that the largest time step also
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Fig. 11. Time step convergence for the third-order IMEX scheme: (a) pressure; (b) w-velocity; (c) displacement and (d) lift.
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predicts a smaller physical damping and that the error in the lift is 
 10%. For Dt ¼ 0:008 the results are basi-
cally equal to the temporally exact solution.

To give an idea of other partitioned methods we mention the second-order partitioned methods used in [43]
and [20], which use a physical time step for the integration of the flow of Dt ¼ 0:001 and Dt ¼ 0:0025, respec-
tively. The time step of Dt ¼ 0:0025 is approximately the limit that can be allowed for the second-order par-
titioned scheme. At this time step the second-order scheme predicts a lower physical damping, comparable to
IMEX3 with Dt ¼ 0:008 and IMEX4 with Dt ¼ 0:016. However, it is argued in [20] that it is difficult to identify
whether a (slowly) diverging solution (like IMEX3, Dt ¼ 0:016 in Fig. 12a) is caused by a numerical or a phys-
ical instability. The only way of identifying the cause of the instability would be to use a smaller time step.
Comparing to a time step of Dt ¼ 0:001 which is necessary for a highly accurate solution with the second-order
partitioned schemes, the IMEX schemes can use time steps that are at least a factor of 4 and 8 larger for the
third and fourth-order methods, respectively. Since the IMEX schemes use multiple implicit stages per time
step (three stages for IMEX3 and five stages for IMEX4), a single time step is computationally more expensive
than a time step with the second-order partitioned schemes. Solving an implicit stage is approximately as
expensive as solving a single time step with the second-order methods. Taking this into consideration we
expect a reduction in computing time compared to second-order partitioned schemes.
4. Conclusions

In this paper, we use a radial basis function interpolation for the deformation of the flow mesh in fluid–
structure interaction simulations and high order IMEX schemes for the partitioned time integration. For
an academic one-dimensional problem it is shown that the regularity of the flow mesh deformation has a pro-
found influence on the accuracy and order of the time integration. It is also shown that through the accurate
and smooth interpolation field obtained with radial basis function interpolation the higher order of the IMEX
schemes is preserved.

In this paper, we have extended and applied the partitioned IMEX schemes to three-dimensional applica-
tions. By using a radial basis function interpolation the displacements of the structure nodes can be immedi-
ately interpolated to a displacement field for the whole fluid domain. For the AGARD 445.6 wing test case, a
clear third-order convergence is observed for IMEX3. For simulations with a high temporal accuracy, neces-
sary to discriminate between physical and numerical divergence, the high order schemes are expected to reduce
computing times compared to second-order partitioned schemes.
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Appendix A. Algorithm

Given the initial conditions at t = 0: U0, j0, x0
f and W0 perform the time integration:

(1) Initialize first stage:
Uð1Þ ¼ Un; jð1Þ ¼ jn; x
ð1Þ
f ¼ xn

f ; R
ð1Þ
f ¼ RðUð1Þ; jð1ÞÞ;

Wð1Þ ¼Wn; F
ð1Þ
sf ¼ H sfp

ð1Þ and Rð1Þs ¼ RsðWð1Þ;Fn
sfÞ:
(2) For k ¼ 2 . . . s stages do: Estimate F
ðkÞ
sf by
F
ðkÞ	
sf ¼

Xk�1

i¼1

âki � aki

akk
F
ðiÞ
sf :

Compute the structure state vector WðkÞ which satisfies
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WðkÞ þ akkDtRsðWðkÞ;F
ðkÞ	
sf Þ ¼Wn � Dt

Xk�1

i¼1

akiR
ðiÞ
s :

Deform the fluid mesh according to the structure displacements at the interface dðkÞs and compute the
mesh velocities satisfying the D-GCL

x
ðkÞ
f ¼ x0

f þ HXf sd
ðkÞ
s ;

jðkÞ ¼Fðxn
f ; x

ðiji¼1;...;kÞ
f Þ:

Compute the fluid state vector UðkÞ which satisfies

UðkÞ þ akkDtRfðUðkÞ; jðkÞÞ ¼ Un � Dt
Xk�1

i¼1

akiR
ðiÞ
f :

Store the flow residual

R
ðkÞ
f ¼ RfðUðkÞ; jðkÞÞ;

and transfer the boundary pressure pðkÞ obtained from the new fluid state to the structure interface to
compute and store the corrected structure residual

F
ðkÞ
sf ¼ H sfp

ðkÞ;

RðkÞs ¼ RsðWðkÞ
s ;F

ðkÞ
sf Þ: ðA:1Þ
(3) Update the flow and its mesh properties to the new time level tnþ1
Unþ1 ¼ UðsÞ; jnþ1 ¼ jðsÞ; xnþ1
f ¼ x

ðsÞ
f ;

and update the structure state

Wnþ1 ¼Wn � Dt
Xs

i¼1

biR
ðiÞ

s :
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